
SOME LOWENHEIM-SKOLEM RESULTS FOR 
ADMISSIBLE SETS 

B Y  

MARK NADEL 

A B S T R A C T  

For any admissible set A, there is an A-recursive set of sentences of.~aa which 
has a model but no A-finite model. A countable admissible set has the Lowen- 
heim-Skolem property iff it is recurisvely inaccessible and locally countable. 

-,q~,o is the infinitary language which allows conjunctions and disjunctions 

over arbitrary sets of formulas, but quantifications only over finitely many 

variables at a time. For  an admissible set A, ~ a  means the language " ~ |  A."  

An admissible set A is said to satisfy the Lowenheim-Skolem property if when- 

ever 5e is an A-finite language and ~b is a sentence of ~ , t  which has a model, 

then ff has an A-finite model. The standard downward Lowenheim-Skolem 

theorem for ~| is the statement that H(~) satisfies the Lowenheim-Skolem 

property for each cardinal ~. Two directions for inquiry are immediately obvious. 

The first direction is simply a search for a natural characterization of those 

admissible sets satisfying the Lowenheim-Skolem property. The second di- 

rection leads us to determine whether there is some stronger Lowenheim-Skolem 

property which is satisfied by some, perhaps smaller, class of admissible sets. 

In this paper we briefly explore both directions. 

~ 

We begin by recalling some notions concerning admissible sets. For  the 

definitions, proofs or explanations that we do not include, the reader may consult 

[1] or [3]. 

I f  A is an admissible set, we denote by o(A) the least ordinal not in A. We say 
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that is recursively inaccessible iff whenever a E A, there is an admissible set B with 

a E B E A .  For a transitive set a, a + is the smallest admissible set containing a. 

Then, A is not recursively inaccessible only if there is a transitive a E A such that 

o(a +) = o(A). A is locally countable iff for each a E A ,  there is a 1-1 function 

f E  A from a into co. A is said to be projectible iff there is an a E A and an A- 

recursive F mapping A 1-1 into a. We will need the following: 

LEMMA. I f  A is admissible and projectible into a E A, then a has no power 

set in the sense of A. 

The proof is basically the original Cantor diagonal argument. 

Rather than list the axioms for the theory KP, we will say that it is precisely that 

weak set theory which makes transitive e-models admissible. If  ~ = (M, E)  is a 

model of KP, then Barwise [1] has shown that the well-founded "standard par t "  

of M with respect to E is admissible. 

1. 
H. Friedman (personal communication) made the second general question 

specific by asking if for every admissible set A, there is an A-recursive set of  

sentences with a model, but no A-finite model. We answer this question in: 

THEOREM 1. Let A be admissible. Then there is an A-recursive set S of 

sentences of ZPA, where s has only 8, such that S has a model but no A-finite 

model. 

PgooF. First we capture the e-diagram of A, using only the symbol 8, in a way 

suggested to us by Barwise. By e-induction in A we define 

~bo(v ) = Vy--7 [ y e  v] 

(Oa(V) = Vy[y e V*-~ V ~bb(Y)]. 
b e a  

Let S be the A-recursive set of formulas 

(3 ! vc~,(v): a E A}. 

S obviously has (A, e) as a model. Suppose that 9~R = (M, E)  is any model for S. 

Consider the mapping F from A to M defined by 

(a,  m) E F ~ R  ~ ~ba[m ]. 

It follows that F is indeed a function since, according to S, each ~, has a unique 

solution. F is 1-1 since A is extensional. Of course F is an isomorphic embedding 

of (A, e) into 9J~, such that 9J~ is an end extension of the image of A. Moreover, 
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if93~ is A-finite, then F is A-recursive. Conversely, ifgJ~ is any extensional structure 

(full extensionality is generally not necessary) such that A can be embedded in 9~ 

so that 9J~ is an end extension of the image of A, then 9J~ is a model of S and F is 

the unique embedding. 

We now assume that 9J~ is A-finite and derive a contradiction. We know, in 

particular, that F is a projection of A into M, and so, by the Lemma, A cannot 

satisfy the power set axiom. We use our hypothesis to show that A must, in fact 

satisfy the power set axiom. 

Let a ~ A. Since F is an "end embedding," it is clear that for each b ~ A, 

b c a ,,--,,r ~ F(b) c F(a). 

Conversely, if m ~M and 9Y~ ~ m c F(a), then, since F is an "end embedding," 

m c range F. Thus by Z-replacement in A, there is a b with F(b) = m, and so 

clearly also b c a. 

I f  we let 
P = { m ~ M : g Y ~ m  ~ F(a)} 

then P ~ A by A-separation, and clearly P is the power set of F(a) in ~J~. Now let 

P ' =  (b: 3m ~P[F(b) = m]}. 

Then P '  ~ A by Z-replacement, and by our observations above, P' is the power 

set o f a  i n A .  

This completes the proof. 

Of interest in its own right is: 

COROLLARY. Let A be admissible. Let ~ be an A-finite extensional structure. 

Then ~J~ is not isomorphic to an end extension of (A , e ) .  

2, 

Barwise, in his thesis, noted that if ~ is the first recursively inaccessible ordinal 

then L, has the Lowenheim-Skolem property. Later, Barwise, Sacks, and the 

present author each realized that every locally countable recursively inaccessible 

set satisfies the Lowenheim-Skolem property. The reason for this is that the 

"model existence theorem" of Makkai is provable in KP, and that "provability", 

or rather "non-provability" is absolute for countable admissible sets. 

Our intention is to establish the converse, i.e. we would like to show. 

THEOREM 2. An admissible set A c H(o~I) has the Lowenheim-Skolem 

property iff  A is locally countable and recursively inaccessible. 
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PROOF. It is easy to see that if A has the Lowenheim-Skolem property then A 

is locally countable. We need only make use of the language ~ce with the binary 

relation symbol e, and a unary function symbol f.  

Let a �9 A. Consider the sentence ~b of Aaa which describes the e-diagram of  the 

transitive closure of {a} U (co}, and says t h a t f i s  a 1-1 function from the element 

having the e-diagram of  a into the element having the e-diagram of co. By the 

Lowenheim-Skolem property, q~ has an A-finite model 93~ = ( M ,  E , f ) .  By our 

observations in the proof  of Theorem 1, we know we can map co and a onto their 

respective representatives in M, inside A. Composing with f we get the required 

A-finite function. 

Now suppose that A is not recursively inaccessible. Then there is a transitive 

a �9 A such that o(a +) = o(A). 
One obvious candidate, in view of the corollary, for an A-finite sentence with a 

model but no A-finite model is the sentence expressing that a model with a single 

binary relation satisfies KP, and "has  a as an element." As a contrast to the 

corollary we show that this candidate does not work, even if we add local 

countability. 

We use the Barwise Compactness theorem. Let ~ be the first recursively inac- 

cessible ordinal. Let x c co be such that co~ = ~, and let A = x + = L,(x). In our 

language .~e we have the binary relation symbol e, and constant symbols a for 

each a �9 A, and additional constant symbols M, N, and r. 

Our A-recursive set of  sentences F ~ Aaa will say 

I. Vv[v�9 V v = b] 
b e a  

for each a �9 A, i.e. we have an end extension of A. 

II. "Every ordinal is recursive in x" .  

This guarantees that our model will only be well-founded below ~. 

III. KP, 

so that if we " t runca te"  the model at rank ~ we get an admissible set. 

IV. 

V. 

VI. 

VII. 

VIII. 

IX. 

" M  ~ K P "  

"The  ordinals of M have an initial segment of type ft." for each fl �9 ~. 

r c co & r is an element of M. 

" M  = r +. ' '  

"Every element is countable." 

" M  ~ "Every element is countable." " 
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Finally, to ensure that we trap something resembling M in the truncation we 

demand: 

X. " M  is isomorphic to N and N c R(co + 2) and the isomorphism is the 

identity on R(co + 1). 

Now, let Fo c F with Fo ~ A. We take, as our model for Fo, A with each constant 

a interpreted by a itself. Suppose that each ordinal ~ mentioned in ( V ) n F o  is 

below ~ > co + 1. Then, we choose for M, (L(~+), e), and since L(~ +) is countable 

in A; for N w e  take some copy ofL(~ +) as required by (X). Finally, for r we take 

some real of L(~ +) coding ~, which can be found since ~ is countable in L(~+). 

Under this interpretation, we clearly have a model of F0. 

By the Barwise Compactness theorem we get a model (B,E, ... ~ for F. I f A '  

is the "standard par t"  of (B, E~, then A' is admissible and o(A') = ~. Furthermore 

if we let 91 be the interpretation of N in B, and r, the interpretation of r, then 

9l ~ A', r is an element of 91, and co~ = oz. In summary, A' together with r and 91 

represent the anomaly for which we have been looking. 

It is also possible to find an admissible A with o(A) cK and an A-finite ~-COl , 

co-model of KP plus the axiom of infinity. One could prove the existence of such a 

pair by using the fact that if a ~ predicate has a solution, it has a solution x of 

strictly lower hyperdegree than Kleene's 0, i.e., such that co~ cK c o l  " 

There are, nevertheless, several fruitful ways to prove Theorem 2. We choose a 

method which gives information about arbitrary admissible A. 

We proceed as follows. We start with the original candidate. If  it has no A-finite 

model we are done. Now suppose that it does have a model 9J~. 

Instead of  looking at the entire model 99~, we merely look at its ordinals, which 

we call 91. Clearly 91 is A-finite. 

In [2], Friedman observed that the order type of any co-model of KP is of  the 

form ~ + a .  p where a is an admissible ordinal and p is dense without endpoints. 

In our case, of  course, ~ - o(A) and p is simply the order type of  the rationals. 

Just as we showed that if A c H(co~) satisfies the Lowenheim-Skolem property, 

then A is locally countable, we could show that isomorphic A-finite structures have 

A-finite isomorphisms between them. We will use this property to obtain an 

A-finite linear ordering of type a which is, of  course, impossible. 

Specifically, we could describe the initial segment S of LAP of type a as the 

following I~ class of A. 
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{n ~r 30~3f[~ is an ordinal and f is an order isomorphism between (~, e) 

and the predecessors of n in aft.} 

At the same time we could define ~ r / S  in the following ]g way. 

{n cuff: 3 f3n '  EJff[n ~ n' a n d f  is an automorphism of~4/" carrying n to n'}. 

This characterization works since vV'/S has order type ~ ../ff and hence 

elements of d i s  can be non-trivially automorphed, and by our assumption 

automorphisms can be found within A. 

Using A-separation in A, we have S ~ A. Since S inherits an ordering of type 0c 
fromaV', we have the desired contradiction, and so A cannot have the Lowenheim- 

Skolem property. This completes the proof of Theorem 2. 

As a result of our use of e-diagrams in the proof, we can observe, in addition, 

that the Lowenheim-Skolem property would have been no weaker had we required 

that the language 5e involved be strictly finite. 

I fA  is not countable we can still get the same "negative" result, i.e., if A has the 

Lowenheim-Skolem property, then A is recursively inaccessible. We could adapt 

the above proof by considering so-called "back and forth sets" in place of automor- 

phisms. We cannot, however, expect to get any simple "internal" conditions on 

A for the positive half of the result, since semantical consistency is not absolute. 
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