SOME LOWENHEIM-SKOLEM RESULTS FOR ADMISSIBLE SETS

BY

MARK NADEL

ABSTRACT

For any admissible set A, there is an A-recursive set of sentences of \mathscr{L}_4 which has a model but no A-finite model. A countable admissible set has the Lowenheim-Skolem property iff it is recurisvely inaccessible and locally countable.

 $\mathscr{L}_{\infty\omega}$ is the infinitary language which allows conjunctions and disjunctions over arbitrary sets of formulas, but quantifications only over finitely many variables at a time. For an admissible set A, \mathscr{L}_A means the language " $\mathscr{L}_{\infty} \cap A$." An admissible set A is said to satisfy the Lowenheim-Skolem property if whenever $\mathscr L$ is an A-finite language and ϕ is a sentence of $\mathscr L_A$ which has a model, then ϕ has an A-finite model. The standard downward Lowenheim-Skolem theorem for \mathscr{L}_{∞} is the statement that $H(x)$ satisfies the Lowenheim-Skolem property for each cardinal \times . Two directions for inquiry are immediately obvious. The first direction is simply a search for a natural characterization of those admissible sets satisfying the Lowenheim-Skolem property. The second direction leads us to determine whether there is some stronger Lowenheim-Skolem property which is satisfied by some, perhaps smaller, class of admissible sets. In this paper we briefly explore both directions.

 $\mathbf{0}$.

We begin by recalling some notions concerning admissible sets. For the definitions, proofs or explanations that we do not include, the reader may consult $\lceil 1 \rceil$ or $\lceil 3 \rceil$.

If A is an admissible set, we denote by $o(A)$ the least ordinal not in A . We say

Received June 14, 1971

that is recursively inaccessible iff whenever $a \in A$, there is an admissible set B with $a \in B \in A$. For a transitive set a, a^+ is the smallest admissible set containing a. Then, A is not recursively inaccessible only if there is a transitive $a \in A$ such that $o(a^+) = o(A)$. A is locally countable iff for each $a \in A$, there is a 1-1 function $f \in A$ from a into ω . A is said to be projectible iff there is an $a \in A$ and an Arecursive F mapping A 1-1 into a . We will need the following:

LEMMA. If A is admissible and projectible into $a \in A$, then a has no power *set in the sense of A.*

The proof is basically the original Cantor diagonal argument.

Rather than list the axioms for the theory *KP,* we will say that it is precisely that weak set theory which makes transitive ϵ -models admissible. If $\mathfrak{M} = \langle M, E \rangle$ is a model of KP , then Barwise $[1]$ has shown that the well-founded "standard part" of M with respect to E is admissible.

1.

H. Friedman (personal communication) made the second general question specific by asking if for every admissible set A, there is an A-recursive set of sentences with a model, but no A-finite model. We answer this question in:

THEOREM 1. *Let A be admissible. Then there is an A-recursive set S of sentences of* \mathscr{L}_A *, where* $\mathscr L$ *has only* ε *, such that S has a model but no A-finite model.*

PROOF. First we capture the ϵ -diagram of A, using only the symbol ϵ , in a way suggested to us by Barwise. By \in -induction in A we define

$$
\begin{aligned}\n\phi_0(v) &= \forall y - \begin{bmatrix} y & \varepsilon \, v \end{bmatrix} \\
\phi_a(v) &= \forall y \begin{bmatrix} y & \varepsilon \, v \leftrightarrow \vee \downarrow \phi_b(y) \end{bmatrix}.\n\end{aligned}
$$

Let S be the Λ -recursive set of formulas

$$
\{\exists! v\phi_a(v): a \in A\}.
$$

S obviously has $\langle A, \varepsilon \rangle$ as a model. Suppose that $\mathfrak{M} = \langle M, E \rangle$ is any model for S. Consider the mapping F from A to M defined by

$$
\langle a, m \rangle \in F \leftrightarrow \mathfrak{M} \models \phi_a[m].
$$

It follows that F is indeed a function since, according to S, each ϕ_a has a unique solution. F is 1-1 since A is extensional. Of course F is an isomorphic embedding of $\langle A, \varepsilon \rangle$ into \mathfrak{M} , such that \mathfrak{M} is an end extension of the image of A. Moreover, if \mathfrak{M} is A-finite, then F is A-recursive. Conversely, if \mathfrak{M} is any extensional structure (full extensionality is generally not necessary) such that A can be embedded in \mathfrak{M} so that \mathfrak{M} is an end extension of the image of A, then \mathfrak{M} is a model of S and F is the unique embedding.

We now assume that \mathfrak{M} is A-finite and derive a contradiction. We know, in particular, that F is a projection of A into M, and so, by the Lemma, A cannot satisfy the power set axiom. We use our hypothesis to show that A must, in fact satisfy the power set axiom.

Let $a \in A$. Since F is an "end embedding," it is clear that for each $b \in A$,

$$
b \subset a \leftrightarrow \mathfrak{M} \models F(b) \subset F(a).
$$

Conversely, if $m \in M$ and $\mathfrak{M} \models m \subset F(a)$, then, since F is an "end embedding," $m \subset$ range F. Thus by Σ -replacement in A, there is a b with $F(b) = m$, and so clearly also $b \subset a$.

If we let

$$
P = \{m \in M : \mathfrak{M} \models m \subset F(a)\}
$$

then $P \in A$ by Δ -separation, and clearly P is the power set of $F(a)$ in \mathfrak{M} . Now let

$$
P' = \{b : \exists m \in P[F(b) = m]\}.
$$

Then $P' \in A$ by Σ -replacement, and by our observations above, P' is the power set of a in A .

This completes the proof.

Of interest in its own right is:

COROLLARY. Let A be admissible. Let $\mathfrak M$ be an A-finite extensional structure. *Then* \mathfrak{M} is not isomorphic to an end extension of $\langle A, \varepsilon \rangle$.

2,

Barwise, in his thesis, noted that if α is the first recursively inaccessible ordinal then L_n has the Lowenheim-Skolem property. Later, Barwise, Sacks, and the present author each realized that every locally countable recursively inaccessible set satisfies the Lowenheim-Skolem property. The reason for this is that the "model existence theorem" of Makkai is provable in *KP*, and that "provability", or rather "non-provability" is absolute for countable admissible sets.

Our intention is to establish the converse, i.e. we would like to show.

THEOREM 2. An admissible set $A \subset H(\omega_1)$ has the Lowenheim-Skolem *property iff A is locally countable and recursively inaccessible.*

PROOF. It is easy to see that if A has the Lowenheim-Skolem property then A is locally countable. We need only make use of the language $\mathscr L$ with the binary relation symbol ε , and a unary function symbol f.

Let $a \in A$. Consider the sentence ϕ of \mathscr{L}_A which describes the ε -diagram of the transitive closure of $\{a\} \cup \{\omega\}$, and says that f is a 1-1 function from the element having the ε -diagram of α into the element having the ε -diagram of ω . By the Lowenheim-Skolem property, ϕ has an A-finite model $\mathfrak{M} = \langle M, E, f \rangle$. By our observations in the proof of Theorem 1, we know we can map ω and a onto their respective representatives in M, inside A. Composing with f we get the required A-finite function.

Now suppose that \vec{A} is not recursively inaccessible. Then there is a transitive $a \in A$ such that $o(a^+) = o(A)$.

One obvious candidate, in view of the corollary, for an A-finite sentence with a model but no A-finite model is the sentence expressing that a model with a single binary relation satisfies *KP*, and "has *a* as an element." As a contrast to the corollary we show that this candidate does not work, even if we add local countability.

We use the Barwise Compactness theorem. Let α be the first recursively inaccessible ordinal. Let $x \subset \omega$ be such that $\omega_1^x = \alpha$, and let $A = x^+ = L_\alpha(x)$. In our language $\mathscr L$ we have the binary relation symbol ε , and constant symbols a for each $a \in A$, and additional constant symbols M, N, and r.

Our A-recursive set of sentences $\Gamma \subset \mathscr{L}_A$ will say

I.
$$
\forall v[v \in a \leftrightarrow \bigvee_{b \in a} v = b]
$$

for each $a \in A$, i.e. we have an end extension of A.

II. "Every ordinal is recursive in x ".

This guarantees that our model will only be well-founded below α .

III. *KP,*

so that if we "truncate" the model at rank α we get an admissible set.

IV. $M \models K P$ "

V. "The ordinals of M have an initial segment of type β ." for each $\beta \in \alpha$.

VI. $r \subset \omega \& r$ is an element of M.

VII.
$$
``M = r^+."
$$

VIII. "Every element is countable."

IX. " $M \models$ "Every element is countable.""

Finally, to ensure that we trap something resembling M in the truncation we demand:

X. "M is isomorphic to N and $N \subset R(\omega + 2)$ and the isomorphism is the identity on $R(\omega + 1)$.

Now, let $\Gamma_0 \subset \Gamma$ with $\Gamma_0 \in A$. We take, as our model for Γ_0 , A with each constant a interpreted by a itself. Suppose that each ordinal β mentioned in $(V) \cap \Gamma_0$ is below $\gamma > \omega + 1$. Then, we choose for M, $\langle L(\gamma^+), \varepsilon \rangle$, and since $L(\gamma^+)$ is countable in A; for N we take some copy of $L(\gamma^+)$ as required by (X). Finally, for r we take some real of $L(\gamma^+)$ coding γ , which can be found since γ is countable in $L(\gamma^+)$. Under this interpretation, we clearly have a model of Γ_0 .

By the Barwise Compactness theorem we get a model $\langle B, E, \dots \rangle$ for Γ . If A' is the "standard part" of $\langle B, E \rangle$, then A' is admissible and $o(A') = \alpha$. Furthermore if we let \Re be the interpretation of N in B, and r, the interpretation of r, then $\mathfrak{N} \in A'$, r is an element of \mathfrak{N} , and $\omega_1^r = \alpha$. In summary, A' together with r and \mathfrak{N} represent the anomaly for which we have been looking.

It is also possible to find an admissible A with $o(A) = \omega_1^{CK}$, and an A-finite co-model of *KP* plus the axiom of infinity. One could prove the existence of such a pair by using the fact that if a Σ_1^1 predicate has a solution, it has a solution x of strictly lower hyperdegree than Kleene's 0, i.e., such that $\omega_1^{(x)} = \omega_1^{CK}$.

There are, nevertheless, several fruitful ways to prove Theorem 2. We choose a method which gives information about arbitrary admissible A.

We proceed as follows. We start with the original candidate. If it has no A-finite model we are done. Now suppose that it does have a model \mathfrak{M} .

Instead of looking at the entire model \mathfrak{M} , we merely look at its ordinals, which we call \mathfrak{N} . Clearly \mathfrak{N} is A-finite.

In [2], Friedman observed that the order type of any ω -model of *KP* is of the form $\alpha + \alpha \cdot \rho$ where α is an admissible ordinal and ρ is dense without endpoints. In our case, of course, $\alpha = o(A)$ and ρ is simply the order type of the rationals.

Just as we showed that if $A \subseteq H(\omega_1)$ satisfies the Lowenheim-Skolem property, then A is locally countable, we could show that isomorphic A-finite structures have A-finite isomorphisms between them. We will use this property to obtain an A-finite linear ordering of type α which is, of course, impossible.

Specifically, we could describe the initial segment S of $\mathcal N$ of type α as the following Σ class of A.

 ${n \in \mathcal{N}: \exists \alpha \exists f[\alpha$ is an ordinal and f is an order isomorphism between $\langle \alpha, \varepsilon \rangle$$ and the predecessors of n in \mathcal{N} .}

At the same time we could define $\mathcal{N}\backslash S$ in the following Σ way.

 ${n \in \mathcal{N} : \exists f \exists n' \in \mathcal{N} \land n \neq n' \text{ and } f \text{ is an automorphism of } \mathcal{N} \text{ carrying } n \text{ to } n' }$.

This characterization works since $\mathcal{N}\setminus S$ has order type $\alpha \cdot \mathcal{N}$ and hence elements of $\mathcal{N}\backslash S$ can be non-trivially automorphed, and by our assumption automorphisms can be found within A.

Using Δ -separation in A, we have $S \in A$. Since S inherits an ordering of type α from $\mathcal N$, we have the desired contradiction, and so A cannot have the Lowenheim-Skolem property. This completes the proof of Theorem 2.

As a result of our use of e-diagrams in the proof, we can observe, in addition, that the Lowenheim-Skolem property would have been no weaker had we required that the language $\mathscr L$ involved be strictly finite.

If A is not countable we can still get the same "negative" result, i.e., if A has the Lowenheim-Skolem property, then A is recursively inaccessible. We could adapt the above proof by considering so-called "back and forth sets" in place of automorphisms. We cannot, however, expect to get any simple "internal" conditions on A for the positive half of the result, since semantical consistency is not absolute.

REFERENCES

1. J. Barwise, *Infinitary logic and admissible sets,* J. Symbolic Logic 34 (1969), No. 2.

2. H. Friedman, *On the ordinals of models of set theory,* mimeographed notes, Stanford University.

3. H. J. Keisler, *The Model Theory of Infinitary Languages*, North Holland, Amsterdam, 1971.

THE UNIVERSITY OF WINCONSIN